kdd2023 kdd2023 时间序列
一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于kdd2023 kdd2023 时间序列的文章,本文对文章kdd2023 kdd2023 时间序列好好的分析和解答,希望你能喜欢,只有你喜欢的内容存在,只有你来光临,我们才能继续前行。

什么是数据挖掘?数据挖掘怎么做啊?
数据挖掘(Data Mining)是指通过大量数据集进行分类的自动化过程,以通过数据分析来识别趋势和模式,建立关系来解决业务问题。换句话说,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、世搭人们事先不知道的、但又是潜在有用的信息和知识的过程。
原则上讲,数据挖掘可以应用于任何类型的信息存储库及瞬态数据(如数据流),如数据库、数据仓库、数据集市、事务数据库、空间数据库(如地图等)、工程设计数据(如岁返谈建筑设计等)、多媒体数据(文本、图像、视频、音频)、网络、数据流、时间序列数据库等。也正因如此,数据挖掘存在以下特点:
(1)数据集大且不完整
数据挖掘所需要的数据集是很大的,只有数据集越大,得到的规律才能越贴近于正确的实际的规律,结果也才越准确。除此以外,数据往往都是不完整的。
(2)不准确性
数据挖掘存在不准确性,主要是由噪声数据造成的。比如在商业中用户可能会提供假数据;在工厂环境中,正常的数据往往会收到电磁或者是辐射干扰,而出现超出正常值的情况。这些不正常的绝对不可能出现的数据,就叫做噪声,它们会导致数据挖掘存在不准乎碰确性。
(3)模糊的和随机的
数据挖掘是模糊的和随机的。这里的模糊可以和不准确性相关联。由于数据不准确导致只能在大体上对数据进行一个整体的观察,或者由于涉及到隐私信息无法获知到具体的一些内容,这个时候如果想要做相关的分析操作,就只能在大体上做一些分析,无法精确进行判断。
而数据的随机性有两个解释,一个是获取的数据随机;我们无法得知用户填写的到底是什么内容。第二个是分析结果随机。数据交给机器进行判断和学习,那么一切的操作都属于是灰箱操作。
翟婉明的博士生有出名的吗
翟婉明是中国著名的物理学家,其博士生中有不少人在学术界取得了卓越的成就。其中最出名的是张首晟,他是翟婉明博士生中最杰出的一位。张首晟是现代物理学领域最重要的科学家之一,他是量子场论、弦论和宇宙学的领军人物之一。他曾经提出并发展了超弦理论,被誉为现代物理学最深刻的思想之一。张首晟还获得裂仔了2023年度基础物理学突破奖,以表彰他在理论领域的杰出成就。
此洞源庆外,翟婉明的另一位博士生朱炳华也是物理学领域的杰出人才。他是国际著名纳握的凝聚态物理学家之一,曾经在量子霍尔效应和分数量子霍尔效应等领域做出了重要贡献。朱炳华还曾获得过2023年度物理学突破奖,以表彰他在凝聚态物理学领域的杰出成就。
总之,翟婉明的博士生中有不少人都在物理学领域做出了杰出的贡献,他们的成就不仅体现了翟婉明的指导水平,也展示了中国物理学界的实力和潜力。
数据挖掘与数据分析的区别是什么?
1.数据挖掘
数据挖掘是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信息和知识的过程。数据挖掘主要侧重解决四类问题:分类、聚类、关联和预测,就是定量、定性,数据挖掘的重点在寻找未知的模式与规律。输出模型或规则,并且可相应得到模型得分或标签,模型得分如流失概率值、总和得分、相似度、预测值等,标签如高中低价值用户、流失与非流失、信用优良中差等。主要采用决策树、神经网络、关联规则、聚类分析等统计学、人工智能、机器学习等方法进行挖扮蔽掘。综合起来,数据分析(狭义)与数据挖掘的本质都是一样的,都是从数据里面发现关于业务的知识(有价值的信息),从而帮助业务运营、改进产品以及帮助企业做更好的决策,所以数据分析(狭义)与数据挖掘构成广义的数据分析。这些内容与数据分析都是不一样的。
2.数据分析
其实我们可以这样说,数据分析是对数据的一种操作手段,或者算法。目标是针对先验的约束,对数据进行整理、筛选、加工,由此得到信息。数据挖掘,判轿是对数据分析手段后的信息,进行价值化的分析。而数据分析和数据挖掘,又是甚至是递归的。就是数据分析的结果是信息,这些信息作为数据,由数据去挖掘。而数据挖掘,又使用了数据分析的手段,周而复始。由此可见,数据分析与数据挖掘的区别还是很明显的。
而两者的具体区别在于:
(其实数据分析的范围广,包含了数据挖掘,在这里区别主要是指统计分析)
数据量上:数据分析的数据量可能并不大,而数据挖掘的数据量极大。
约束上:数据分析是从一个假设出发,需要自行建立方程或模型来与假设吻合,而数据挖掘不需要假设,可以自动建立方程。
对象上:数据分析往往是针对数字化的数据,而数据挖掘能够采用不同类型的数据,比如声音,文本等。
结果上:数据分析对结果进行解释,呈现出有效信息,数据挖掘的结果不容易解释,对信息进行价值评估,着眼于预测未来,并提出决策性建议。
数据分析是把数据变成信息的工具,数据挖掘是把信息变成认知的工具,如果我们想要从数据中提取一定的规律(即认知)往往需要数据分析和数据挖掘结合使用。
举个例子说明:你揣着50元去菜市场买菜,对于琳琅满目的鸡鸭鱼猪肉以及各类蔬菜,想荤素搭配,你逐一询问价格,不断进行统计分析,厅冲州能各自买到多少肉,多少菜,大概能吃多久,心里得出一组信息,这就是数据分析。而关系到你做出选择的时候就需要对这些信息进行价值评估,根据自己的偏好,营养价值,科学的搭配,用餐时间计划,最有性价比的组合等等,对这些信息进行价值化分析,最终确定一个购买方案,这就是数据挖掘。
数据分析与数据挖掘的结合最终才能落地,将数据的有用性发挥到极致。
以上内容是小编精心整理的关于kdd2023 kdd2023 时间序列的精彩内容,好的文章需要你的分享,喜欢kdd2023 kdd2023 时间序列这篇精彩文章的,请您经常光顾吧!
下一篇:更多十二星座